Metode AHP dikembangkan oleh Thomas L.
Saaty, seorang ahli matematika. Metode ini adalah sebuah kerangka untuk
mengambil keputusan dengan efektif atas persoalan yang kompleks dengan
menyederhanakan dan mempercepat proses pengambilan keputusan dengan memecahkan persoalan
tersebut kedalam bagian-bagiannya, menata bagian atau variabel ini dalam suatu
susunan hirarki, member nilai numerik pada pertimbangan subjektif tentang
pentingnya tiap variabel dan mensintesis berbagai pertimbangan ini untuk
menetapkan variabel yang mana yang memiliki prioritas paling tinggi dan
bertindak untuk mempengaruhi hasil pada situasi tersebut. Metode AHP ini
membantu memecahkan persoalan yang kompleks dengan menstruktur suatu hirarki
kriteria, pihak yang berkepentingan, hasil dan dengan menarik berbagai
pertimbangan guna mengembangkan bobot atau prioritas. Metode ini juga
menggabungkan kekuatan dari perasaan dan logika yang bersangkutan pada berbagai
persoalan, lalu mensintesis berbagai pertimbangan yang beragam menjadi hasil
yang cocok dengan perkiraan kita secara intuitif sebagaimana yang
dipresentasikan pada pertimbangan yang telah dibuat. (Saaty, 1993).
Proses hierarki adalah suatu model yang memberikan
kesempatan bagi perorangan atau kelompok untuk membangun gagasan-gagasan dan
mendefinisikan persoalan dengan cara membuat asumsi mereka masing-masing dan
memperoleh pemecahan yang diinginkan darinya. Ada dua alasan utama untuk menyatakan suatu
tindakan akan lebih baik dibanding tindakan lain. Alasan yang pertama adalah
pengaruh-pengaruh tindakan tersebut kadang-kadang tidak dapat dibandingkan
karena sutu ukuran atau bidang yang berbeda dan kedua, menyatakan bahwa
pengaruh tindakan tersebut kadang-kadang saling bentrok, artinya perbaikan
pengaruh tindakan tersebut yang satu dapat dicapai dengan pemburukan lainnya.
Kedua alasan tersebut akan menyulitkan dalam membuat ekuivalensi antar pengaruh
sehingga diperlukan suatu skala luwes yang disebut prioritas.
Prinsip Dasar dan Aksioma AHP
AHP didasarkan atas 3 prinsip dasar yaitu:
1. Dekomposisi
Dengan prinsip ini struktur masalah
yang kompleks dibagi menjadi bagian-bagian secara hierarki. Tujuan
didefinisikan dari yang umum sampai khusus. Dalam bentuk yang paling sederhana
struktur akan dibandingkan tujuan, kriteria dan level alternatif. Tiap himpunan
alternatif mungkin akan dibagi lebih jauh menjadi tingkatan yang lebih detail,
mencakup lebih banyak kriteria yang lain. Level paling atas dari hirarki
merupakan tujuan yang terdiri atas satu elemen. Level berikutnya mungkin
mengandung beberapa elemen, di mana elemen-elemen tersebut bisa dibandingkan,
memiliki kepentingan yang hampir sama dan tidak memiliki perbedaan yang terlalu
mencolok. Jika perbedaan terlalu besar harus dibuatkan level yang baru.
2. Perbandingan
penilaian/pertimbangan (comparative judgments).
Dengan prinsip ini akan dibangun
perbandingan berpasangan dari semua elemen yang ada dengan tujuan menghasilkan
skala kepentingan relatif dari elemen. Penilaian menghasilkan skala penilaian
yang berupa angka. Perbandingan berpasangan dalam bentuk matriks jika
dikombinasikan akan menghasilkan prioritas.
3. Sintesa Prioritas
Sintesa prioritas dilakukan dengan
mengalikan prioritas lokal dengan prioritas dari kriteria bersangkutan di level
atasnya dan menambahkannya ke tiap elemen dalam level yang dipengaruhi
kriteria. Hasilnya berupa gabungan atau dikenal dengan prioritas global yang
kemudian digunakan untuk memboboti prioritas lokal dari elemen di level
terendah sesuai dengan kriterianya.
AHP didasarkan atas 3 aksioma utama yaitu :
1. Aksioma Resiprokal
Aksioma ini menyatakan jika PC
(EA,EB) adalah sebuah perbandingan berpasangan antara elemen A dan elemen B,
dengan memperhitungkan C sebagai elemen parent, menunjukkan berapa kali lebih
banyak properti yang dimiliki elemen A terhadap B, maka PC (EB,EA)= 1/ PC
(EA,EB). Misalnya jika A 5 kali lebih besar daripada B, maka B=1/5 A.
2. Aksioma Homogenitas
Aksioma ini menyatakan bahwa elemen
yang dibandingkan tidak berbeda terlalu jauh. Jika perbedaan terlalu besar,
hasil yang didapatkan mengandung nilai kesalahan yang tinggi. Ketika hirarki
dibangun, kita harus berusaha mengatur elemen-elemen agar elemen tersebut tidak
menghasilkan hasil dengan akurasi rendah dan inkonsistensi tinggi.
3. Aksioma Ketergantungan
Aksioma ini menyatakan bahwa prioritas
elemen dalam hirarki tidak bergantung pada elemen level di bawahnya. Aksioma
ini membuat kita bisa menerapkan prinsip komposisi hirarki.
Kelebihan dan Kekurangan dalam Metode AHP
Kelebihan
1. Struktur yang
berhierarki sebagai konskwensi dari kriteria yang dipilih sampai pada sub-sub
kriteria yang paling dalam.
2. Memperhitungkan
validitas sampai batas toleransi inkonsentrasi sebagai kriteria dan alternatif
yang dipilih oleh para pengambil keputusan.
3.
Memperhitungkan
daya tahan atau ketahanan output analisis sensitivitas pengambilan keputusan.
Metode “pairwise comparison” AHP mempunyai kemampuan
untuk memecahkan masalah yang diteliti multi obyek dan multi kriteria yang
berdasar pada perbandingan preferensi dari tiap elemen dalam hierarki. Jadi model ini
merupakan model yang komperehensif. Pembuat keputusan menetukan pilihan atas
pasangan perbandingan yang sederhana, membengun semua prioritas untuk urutan
alternatif. “ Pairwaise comparison” AHP mwenggunakan data yang ada
bersifat kualitatif berdasarkan pada persepsi, pengalaman, intuisi sehigga
dirasakan dan diamati, namun kelengkapan data numerik tidak menunjang untuk
memodelkan secara kuantitatif.
Kelemahan
1. Ketergantungan model AHP pada input utamanya.
Input utama ini
berupa persepsi seorang ahli sehingga dalam hal ini melibatkan subyektifitas
sang ahli selain itu juga model menjadi tidak berarti jika ahli tersebut
memberikan penilaian yang keliru.
2.
Metode AHP ini hanya metode
matematis tanpa ada pengujian secara statistik
sehingga tidak
ada batas kepercayaan dari kebenaran model yang terbentuk
Contoh Kasus
Adi berulang tahun yang ke-17, Kedua orang
tuanya janji untuk membelikan sepeda motor sesuai yang di inginkan Adi. Adi
memiliki pilihan yaitu motor Ninja, Tiger dan Vixsion . Adi memiliki criteria
dalam pemilihan sepeda motor yang nantinya akan dia beli yaitu : sepeda
motornya memiliki desain yang bagus, berkualitas serta irit dalam bahan bakar.
Penyelesaian
1. Tahap pertama
Menentukan botot dari masing – masig
kriteria.
Desain
lebih penting 2 kali dari pada Irit
|
Desain
lebih penting 3 kali dari pada Kualitas
|
Irit
lebih penting 1.5 kali dari pada kualitas
|
Pair Comparation Matrix
Kriteria
|
Desain
|
Irit
|
Kualitas
|
Priority Vector
|
Desain
|
1
|
2
|
3
|
0,5455
|
Irit
|
0,5
|
1
|
1,5
|
0,2727
|
Kualitas
|
0,333
|
0,667
|
1
|
0,1818
|
Jumlah
|
1,833
|
3,667
|
5,5
|
1,0000
|
Pricipal Eigen Value (lmax)
|
3,00
|
|||
Consistency Index (CI)
|
0
|
|||
Consistency Ratio (CR)
|
0,0%
|
Dari gambar diatas, Prioity Vector (kolom
paling kanan) menunjukan bobot dari masing-masing kriteria, jadi dalam hal
ini Desain merupakan bobot tertinggi/terpenting menurut Adi, disusul Irit dan
yang terakhir adalah Kualitas.
Cara membuat table seperti di atas
- Untuk perbandingan antara masing – masing kriteria berasal dari bobot yang telah di berikan ADI pertama kali.
- Sedangkan untuk Baris jumlah, merupakan hasil penjumalahan vertikal dari masing – masing kriteria.
- Untuk Priority Vector di dapat dari hasil penjumlahan dari semua sel disebelah Kirinya (pada baris yang sama) setelah terlebih dahulu dibagi dengan Jumlah yang ada dibawahnya, kemudian hasil penjumlahan tersebut dibagi dengan angka 3.
- Untuk mencari Principal Eigen Value (lmax)
Rumusnya adalah
menjumlahkan hasil perkalian antara sel pada baris jumlah dan sel
pada kolom Priority Vector
- Menghitung Consistency Index (CI) dengan rumus
CI = (lmax-n)/(n-1)
- Sedangkan untuk menghitung nilai CR
- Menggunakan rumuas CR = CI/RI , nilai RI didapat dari
n
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
RI
|
0
|
0
|
5,8
|
0,9
|
1,12
|
1,24
|
1,32
|
1,41
|
1,45
|
1,49
|
Jadi untuk n=3,
RI=0.58.
Jika hasil perhitungan CR lebih kecil atau sama dengan 10% , ketidak konsistenan masih bisa diterima, sebaliknya jika lebih besar dari 10%, tidak bisa diterima.
Jika hasil perhitungan CR lebih kecil atau sama dengan 10% , ketidak konsistenan masih bisa diterima, sebaliknya jika lebih besar dari 10%, tidak bisa diterima.
2. Tahap Kedua
Kebetulan teman ADI memiliki teman yang
memiliki motor yang sesuai dengan pilihan ADI. Setelah Adi mencoba motor
temannya tersebut adi memberikan penilaian ( disebut sebagai pair-wire
comparation)
Desain
lebih penting 2 kali dari pada Irit
|
Desain
lebih penting 3 kali dari pada Kualitas
|
Irit
lebih penting 1.5 kali dari pada kualitas
|
Ninja 4 kali desainnya lebih baik daripada tiger
|
Ninja 3 kali desainnya lebih baik dari pada
vixsion
|
tiger
1/2 kali desainnya lebih baik dari pada Vixsion
|
Ninja
1/3 kali lebih irit daripada tiger
|
Ninja
1/4 kali lebih irit dari pada vixsion
|
tiger
1/2 kali lebih irit dari pada Vixsion
|
Berdasarkan penilaian tersebut maka dapat
di buat table (disebut Pair-wire comparation matrix)
Desain
|
Ninja
|
Tiger
|
Vixsion
|
Priority Vector
|
Ninja
|
1
|
4
|
3
|
0,6233
|
Tiger
|
0,25
|
1
|
0,5
|
0,1373
|
Vixsion
|
0,333
|
2
|
1
|
0,2394
|
Jumlah
|
1,583
|
7
|
4,5
|
1,0000
|
Pricipal Eigen Value (lmax)
|
3,025
|
|||
Consistency Index (CI)
|
0,01
|
|||
Consistency Ratio (CR)
|
2,2%
|
Irit
|
Ninja
|
Tiger
|
Vixsion
|
Priority Vector
|
Ninja
|
1
|
0,333
|
0,25
|
0,1226
|
Tiger
|
3
|
1
|
0,5
|
0,3202
|
Vixsion
|
4
|
2
|
1
|
0,5572
|
Jumlah
|
8
|
3,333
|
1,75
|
1,0000
|
Pricipal Eigen Value (lmax)
|
3,023
|
|||
Consistency Index (CI)
|
0,01
|
|||
Consistency Ratio (CR)
|
2,0%
|
Irit
|
Ninja
|
Tiger
|
Vixsion
|
Priority Vector
|
Ninja
|
1,00
|
0,010
|
0,10
|
0,0090
|
Tiger
|
100,00
|
1,00
|
10,0
|
0,9009
|
Vixsion
|
10,00
|
0,100
|
1,0
|
0,0901
|
Jumlah
|
111,00
|
1,11
|
11,10
|
1,0000
|
Pricipal Eigen Value (lmax)
|
3
|
|||
Consistency Index (CI)
|
0
|
|||
Consistency Ratio (CR)
|
0,0%
|
3. Tahap ketiga
Setelah mendapatkan bobot untuk ketiga
kriteria dan skor untuk masing-masing kriteria bagi ketiga motor pilihannya,
maka langkah terakhir adalah menghitung total skor untuk ketiga motor
tersebut. Untuk itu ADI akan merangkum semua hasil penilaiannya tersebut
dalam bentuk tabel yang disebut Overall composite weight, seperti
berikut.
Overall composit
weight
|
weight
|
Ninja
|
Tiger
|
Vixsion
|
Desain
|
0,5455
|
0,6233
|
0,1373
|
0,2394
|
Irit
|
0,2727
|
0,1226
|
0,3202
|
0,5572
|
Kualitas
|
0,1818
|
0,0090
|
0,9009
|
0,0901
|
Composit Weight
|
0,3751
|
0,3260
|
0,2989
|
Cara membuat Overall Composit weight adalah
·
Kolom Weight diambil dari kolom Priority Vektor dalam matrix
Kriteria.
·
Ketiga kolom lainnya (Ninja, Tiger dan Vixsion) diambil dari kolom Priority
Vector ketiga matrix Desain, Irit dan Kualitas.
· Baris Composite Weight diperoleh dari
jumlah hasil perkalian sel diatasnya dengan weight.
Berdasarkan table di atas maka dapat di
ambil kesimpulan bahwa yang memiliki skor paling tinggi adalah Ninja yaitu
0,3751 , sedangkan disusul tiger dengan skor 0,3260 dan yang terakhir adalah
Vixsion dengan skor 0,2989. Akhirnya Adi akan membeli motor Ninja
untuk selengkapnya klik disini Mesran.net
0 komentar:
Posting Komentar